An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
نویسندگان
چکیده
Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.
منابع مشابه
Equation-Free Analysis of Two-Component System Signalling Model Reveals the Emergence of Co-Existing Phenotypes in the Absence of Multistationarity
Phenotypic differences of genetically identical cells under the same environmental conditions have been attributed to the inherent stochasticity of biochemical processes. Various mechanisms have been suggested, including the existence of alternative steady states in regulatory networks that are reached by means of stochastic fluctuations, long transient excursions from a stable state to an unst...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملDynamic Model For Production of Biohydrogen Via Water- Gas Shift Reaction (RESEARCH NOTE)
In design of anaerobic bioreactor, rate equation is commonly used. Mathematical model was developed at steady state condition, to project concentration of gaseous substrate and product in biological oxidation of carbon monoxide with water to produce hydrogen and carbon dioxide. The concept of bioconversion was based on transport of CO from gas phase to liquid phase, as the CO consumption was in...
متن کاملLongest Path in Networks of Queues in the Steady-State
Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...
متن کاملA scalable moment-closure approximation for large-scale biochemical reaction networks
Motivation Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 123 21 شماره
صفحات -
تاریخ انتشار 2005